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Abstract. Experiments on critical behaviour in certain electrolytes pose puzzling theoretical
challenges. Some recent progress by the author and his co-workers in meeting these challenges
through the study of the restricted primitive model (hard spheres carrying charges± q) is
summarized briefly. However, basic questions regarding the universality class(es) of ionic
criticality and the factors determining cross-over from mean-field to Ising behaviour remain
unresolved.

In recent years, precise experiments by Pitzer and co-workers [1, 2] and by others [3–
5] on phase separation and criticality in ionic fluids have suggested a sharp distinction
betweensolvophobic criticality, displayed by non-ionic fluids and many electrolytes, that
is associated with Ising-type exponents,β ' 0.32, γ ' 1.24 and ν ' 0.63 when
t ≡ (T − Tc)/Tc → 0, and Coulombic (or ionic) criticality characterized by classical,
van der Waals exponents,β = 0.5, γ = 1 and ν = 0.5. See also the reviews [6–8].
Only earlier experiments on the sodium–ammonia systems [9] and more recent studies [10],
especially by Narayanan and Pitzer [11, 12], seem to straddle this dichotomy: they show
cross-overfrom classical to Ising behaviour close toTc on characteristic cross-over scales

t× = |T× − Tc|/Tc (1)

in the range 10−1.5 to 10−2.5. In contrast, typical (Ising-type) systems show no cross-over,
corresponding, say, tot× ' 1-0.3. On the other hand, if cross-over eventually occurs in
Pitzer’s original electrolyte [1, 2], one must havet× . 10−4 [6], which is beyond current
limits of observation. These diverse results have presented rather profound challenges to
theory.

Some of the earliest suggested explanations of the classical critical behaviour have
proven to be untenable [13] or improbable [14, 15]. Thus it was claimed that a lattice
model electrolyte in three-dimensional space could be mapped onto the standard, short-range
spherical model and, hence, that the ionic system should display a gas–liquid critical point
with coexistence curve exponent,β = 0.5 (and, it would follow, exponentsα = −1, γ = 2
andν = 1). However, there is no sound basis for that claim [6, 13].

Nor is there justification for a later suggestion that a Coulombic critical point is,
somehow, of tricritical character [6, 7]. Nevertheless, the possibility that, in a suitably
enlarged thermodynamic space, the observation of Coulombic criticality (or a very small
t×) might be associated with the vicinity of a multicritical point of some sort is a tempting
scenario [6]. However, at this stage no concrete evidence has been adduced for it.
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Simulation of appropriate lattice models, in particular a basic four-state model that allows
for ionic association–dissociation, etc [6], might cast light on this. Currently such (d = 3)-
dimensional lattice models seem to have escaped serious computational study.

A much more plausible and interesting suggestion [8, 16] is that the appearance of true
classical or near-classical criticality in place of Ising behaviour in certain electrolytes might
be associated with charge-cavity, ion–ion interaction potentials varying with distance as
1/r4. It can be shown [14, 15], however, that such forces should be strongly screened at
non-zero ionic density, decaying as exp(−2κr)/r2 when the direct, 1/r Coulomb coupling
is screened, as usual, by the factor exp(−κr). Within Debye–Ḧuckel theory representing
the ions as spheres of different dielectric constants does not change any thermodynamic
parameters [14, 15]. Consequently, other explanations of the experiments still seem to be
required.

Perhaps the most fundamental issue raised is theexistence, location and, especially,
the nature of the long-heralded but still rather elusive gas–liquid transition and critical
point in the continuumrestricted primitive model(RPM): hard spheres all of diametera

but carrying charges+q and−q in equal proportions. Earlier theoretical work and Monte
Carlo simulations have been reviewed [6]. Over the years, simulations by a succession of
authors told a rather sad story: the estimated critical density dropped by factors of ten or
more, while the apparent critical temperature has continually decreased, eventually by an
overall factor of almost two! The most recent studies [17, 18] using larger systems and
more sophisticated Monte Carlo techniques suggest, in reduced units, that

T ∗
c ≡ DkBTca/q2 = 0.052–0.056 ρ∗

c = ρca
3 = 0.023–0.035 (2)

with ρ = N/V for a total of N hard-sphere ions in a volumeV of uniform dielectric
constantD [19]†

In an effort to obtain a physically transparent, semi-quantitative description, the work of
Debye and Ḧuckel and its subsequent elaboration via Bjerrum’s concept of bound ion pairs
has been revisited [6, 19, 20]. Unexpectedly, the original 1923 theory of Debye and Hückel
(DH) (which allows explicitly for the hard-sphere diametera) was found to predict phase

† Just before and at the Third Liquid Matter Conference held in Norwich, 6–10 July 1996, the author learned
of progress in the next round of simulations aimed at understanding the critical region of the RPM made by J
P Valleau (private communication, dated 20 June 1996) and by J M Caillol, D Levesque and J J Weis(private
communication, dated 25 June 1996) respectively. Both studies were mentioned at the meeting.

Valleau uses his thermodynamic-scaling Monte Carlo approach [43] forN = 32, 64, 128 and 192 ions which
allows extrapolation towards the thermodynamic limit,N = ∞. The data indicateρ∗

c ' 0.08, significantly higher
than the range indicated in equation (2), and, by extrapolation,T ∗

c ' 0.049–0.050. Note that the higher value
of ρ∗

c is reasonable in light of the 6–12% drop in the estimate forT ∗
c because the diameter of the coexistence

curve has a strong slope (see, e.g. [19, 20]). Furthermore, Valleau observes that the behaviour differs from
that seen in simulations of the critical region of the simple hard-core-square-well and Lennard–Jones fluids, which
exhibit Ising-type criticality (and then finite-size cross-over). Indeed, on first examination, the overall RPM critical
behaviour looks rather classical with little sign of heat-capacity maxima nearρ∗

c , etc.
Caillol et al employ a grand canonical simulation of hard spheres on the surface of a four-dimensional

hypersphere [44] and, in order to extrapolate on size, study systems with reduced volumesV/a3 = (1.5-10)×103.
To analyse the observed density and energy fluctuations they adapt the mixed-field finite-size scaling strategy
of Bruce and Wilding [45]. Extrapolation of the data of Caillolet al suggestsρ∗

c ' 0.070 ± 0.005 and
T ∗

c ' 0.0488± 0.0003, similar to the the estimates based on Valleau’s results. By contrast, however, on the
basis of scaled energy and order-parameter distributions, Caillolet al conclude that the critical behaviour of the
RPM is compatible with Ising-type character. This is in accord with the theoretical Ginzburg-criterion analysis
reported below [33, 34] but seems to leave open the question of the magnitude of any classical-to-Ising crossover
temperature. The use of finite-size extrapolation and scaling in both these studies is to be welcomed; but in terms
of the linear system dimension (which is probably the most relevant parameter) a range of less than 1:1.9 has been
spanned in the present calculations.
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separation and criticality in the primitive model electrolyte [6, 20]. The coexistence curve
proves to be strongly asymmetrical and in qualitative accord with the later simulations. The
critical point atT ∗

c = 1/16 is only about 15% above the best recent simulation estimates; but
the predicted critical densityρ∗

c = 1/64π ' 0.005 is much too small. Because of the mean-
field-like character of the DH theory, all critical exponents are classical [6, 19]; but that has
no predictive value. Allowing also for direct hard-core exclusion effects reduces the values
of T ∗

c andρ∗
c , but only slightly [6, 19, 20]. However, correction of the DH linearization of

the Poisson–Boltzmann equation by including equilibriumpairing of positive and negative
charges improvesρ∗

c significantly. Bjerrum’s 1926 theory of the crucialchemical association
constant, K(T ), has been reviewed with a critical eye; Ebeling’s reformulation is to be
strongly endorsed [19] (following [21, 22]), but makes negligiblenumerical difference in
the critical region and below.

However, following Bjerrum by treating the uncharged (+, −) dipolar ionic pairs as
ideal or electrically inactive, in accord with the original DH concepts, yields an unphysical
coexistence curve [19, 20] resembling a tilted banana! To understand this, the actual nature
and sizes of the associated (+, −) ion pairs in equilibrium must be examined quantitatively
[19, 20]: in fact, Bjerrum’s famous cut-off length for dipolar ‘size’, namely,

RBj =
{

1
2b ≡ q2/2DkBT for T ∗ 6 1

2

a for T ∗ > 1
2

(3)

bears no relationship to any reasonable measure of the typical size of an ion pair [19].
The DH–Bjerrum theory can, nonetheless, be rather naturally extended by including the
solvation free energyof a dipolar pair within the residual fluid of ‘free’ ions and this, in
turn, can be calculated using the approach of DH theory [19, 20, 23]. The dipole–ionic
(DI) contribution to the total free energy proves crucial and restores a reasonable shape
to the coexistence curve. Overall, this DHBjDI theory (and its minor variants) currently
provides the most physically accessible and quantitatively satisfactory description of the
critical region of the RPM [6, 19, 20].

Furthermore, the temperature variation of the vapour pressure curve and of the density
of neutral dipolar pairs is found to correlate rather well [19] with Gillan’s notable numerical
analysis of ion clusters in the vapour at lowT [24]. Improvements to allow for larger ion
clusters and to represent the denser ionic liquid better below criticality are feasible [19].
However, if the DH approximation for the ionic part of the total free energy is replaced
by the popular mean spherical approximation (MSA) (which is exactly soluble ford = 3),
reasonable critical densities are generated but the MSA critical temperatures are all 40–50%
too high! In addition, the predicted density of neutral clusters seems much too low near
criticality and appears to decrease too rapidly (by an exponential factor) as does the vapour
pressure line belowTc [19].

In order to understand the relative failure of the MSA and its improved version, the
GMSA which satisfies various desirable sum rules [25, 26] (and reproduces the Kirkwood–
Stillinger–Lovett charge–charge correlation oscillations at higher densities [26]), it is
interesting to appeal to some of the rather few rigorous [27, 28] or near-rigorous [29]
results available for the restricted primitive model. In 1939, Onsager [27] established the
bound

u ≡ UN(T , ρ)/N > −c0(q
2/Da) (4)

on the mean electrostatic energy per ion, with constantc0 = 1. Both DH theory and the
MSA satisfy this bound [30]. In the limitκa → ∞, where, as usual [6–8], the inverse
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Debye lengthκ is explicitly given by

κ2(T , ρ) = 4πq2ρ1/(DkBT ) (5)

with ρ1 the total density of free ions, one finds thatuMSA approachesthe Onsager bound
with c0 = 1. On the other hand, DH theory yieldsuDH (κa → ∞) = − 1

2q2/Da. More
recently, however, Totsuji [28] has improved the constant in (4) toc0 = 0.96. Evidently,
then, the MSA violates the Totsuji energy bound for large enoughκa (& 1200). One may
suspect that the optimal constant in (4) isc0 ' 0.873 779, corresponding to NaCl ionic
close packing: this is violated by the MSA forκa & 104 [30]. However, DH theory
satisfies even this bound; but one might be happier ifuDH approached closer to the bound
for largeκa, since, energetically, the dense low-temperature fluid should probably resemble
an amorphous NaCl crystal.

In a different direction, Gillan [29] obtained in a convincing, albeit non-rigorous, manner
anupper boundon the free energy of the RPM at generalT andρ. He found that the MSA
seriously violates this bound at low temperatures, roughlyT ∗ . 0.095, and low densities,
ρ∗ . 0.03. The domain of violation reaches the critical region (2) and encloses most of
the vapour side of the coexistence curve. However, the pure DH free energy violates the
bound in a very similar region [30]! Gillan’s argument is based on the idea that ion pairing
is important at lowT . Indeed, one finds [30] that, if ion pairing is introduced (following
[19, 20]), Gillan’s bound is satisfiedthroughout the interesting regions of smallT ∗ andρ∗

[30]; but this is true equally of the simple DHBj and MSABj theories as it is of the more
sophisticated theories allowing for dipole–ionic coupling, direct hard-core repulsions, etc
[30]! Thus the crucial importance of ion-pairing is confirmed, but little further guidance is
provided for preferring DH theory.

Of course, the mean-field character of the DH-based theories (and equally of those
based on the MSA) implies the neglect of all large-scale charge and density fluctuations.
As such, these theories can provide no direct understanding of the reasons for the observation
of classical rather than Ising-type critical behaviour. An appealing conjecture, seemingly
consistent with the current experimental situation [1–15], is that the simple RPM with only
hard-core and Coulombic interactions displays classical critical behaviour, or perhaps has
t× . 10−5, but that the introduction of further, more realistic interactions, van der Waals
forces, ionic polarizability, etc (see, for example, [31–33]) would yield Ising-type criticality
with increasing values oft×, ultimately becoming of order unity. To test this possibility,
the Ginzburg criterion was proposed as a guide to the magnitude of the mean-field-to-
Ising reduced cross-over temperaturet× and roughly applied [20]. However, a proper
implementation of the Ginzburg criterion requires knowledge (at the mean-field level) of
the density–densitycorrelation length,ξ(T , ρ); this, of course, is quite distinct from the
charge–charge correlation or Debye screening lengthξD(T , ρ) ≈ 1/κ(T , ρ), which is all
that is provided by the previous DH-based theories.

One option for estimatingξ(T , ρ) is to employ the GMSA [26, 34] which provides
both charge and density correlation functions. However, in the light of the strong violations
of the Gillan free-energy bound discussed above [29, 30] (owing to the failure to allow
for ion-pairing), the GMSA results [34] must be regarded with suspicion. As has also
been remarked, the GMSA estimates forTc are significantly too high and, furthermore,
it transpires that the behaviour ofξ(T , ρ) predicted by the GMSA whenρ → 0 is quite
erroneous [35, 36].

Happily one can, instead, meet the challenge of estimatingξ(T , ρ) by generalizingDH
theory (and all its ion-pairing, dipole–ion and hard-core extensions [19, 20]) by allowing
for non-uniformionic and dipolar-pair densities in the basic formulation [35]. The resulting
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GDH theories are conceptually simple and yield explicit expressions for the second-moment
density–density correlation lengthξ(T , ρ). Furthermore (in contrast to the GMSA), the
predicted low-density divergence, namely,

ξ(T , ρ) = 1
4[b/(36πρ)]1/4

[
1 + 1

8κb + O(ρ∗)
]

(6)

(with b = q2/(DkBT ) as in (3)) is seen to beuniversal (that is, independent ofa) and,
indeed, appears to be asymptoticallyexact[35–37] in the same way that standard DH theory
predicts the correct universal limiting law

ξD(T , ρ) ≈ 1/κ(T , ρ) ≈ 48ξ2/b as ρ → 0 (7)

for the charge–charge correlation length. (Note thatρ1/ρ → 1 in (5) asρ → 0.) The
last part of the relation (7) demonstrates that, although divergent whenρ → 0, the density
fluctuations decay on ashorter scale than do the charge fluctuations.

Armed with the GDH approach, one can estimate the amplitude of divergence ofξ(T , ρ)

at the mean-field level when the (mean-field) critical point is approached. This is the
essential ingredient, beyond the equation of state itself (obtained from the DHBjDI theories),
needed to implement the Ginzburg criterion [20, 33]. What does one find? Surprisingly,
and perhaps sadly, the conjectured classical (or near-classical) critical behaviour of the
RPM is not supported by the estimates found fort× [33] (in agreement with the GMSA
conclusions [34]). Indeed, by calibrating the Ginzburg approach via the hard-core square-
well fluid [33, 34] one finds, if anything, that the RPM should cross over to Ising-type
behaviour relativelyfurther from Tc! Of course, the Ginzburg criterion is not definitive and
one may speculate [33] that the high asymmetry of the RPM critical region or other factors
will change the picture (see, for example, [38]). At this point, however, other routes to
understanding must be sought.

In a quite distinct attempt to gain analytical insight, the DH theory for the restricted
primitive model has been extended togeneral dimensionalityd [39, 40]. The Coulombic
potential should be taken as

ϕij (r) = qiqj (r
−ε − a−ε)/ε for ε = d − 2 6= 0 (8)

but whenε = 0 or d = 2, one has

ϕij (r) = −qiqj ln(r/a) . (9)

Explicit results include Bjerrum association of the positive and negative ions and also the
dipole–ionic solvation energy [39, 40]. For alld > 2, a critical point terminates coexistence
between a conducting liquid and a conducting vapour. One finds that the critical density,
ρ∗

c = ρca
d , falls asd decreases, butT ∗

c ≡ kBTca
d−2/q2 rises! When d = 2, an insulating

vapour with no free ions suddenly appears whenT drops belowT ∗ = 1
4. However,

this temperature is, in fact, just the well known Kosterlitz–Thouless point. The insulating
vapour phase is found to be separated from the conducting high-temperature fluid by an
infinite-order critical line ending at atricritical point at ρtri = ρc(d → 2) ' 0.004,
T ∗

tri = Tc(d → 2) . 1
4. For ρ∗ > ρ∗

tri , the transition is of first order [39, 40]. At present,
however, it is not clear whether this tricritical point, which has a quite novel, exponentially
sharp character, will survive in more accurate theories.

Nevertheless, the DHBjDI theory ford = 2 provides an effective counter-example [41]
to startling speculations by various authors to the effect thatabovethe standard Kosterlitz–
Thouless (KT) transition atT ∗

KT = 1
4 (when ρ → 0) there should be aninfinite sequence

of subsidiary, multiple unbinding transitions commencing (forρ = 0) asT ∗ falls below
T ∗ = 2T ∗

KT = 1
2. In fact, one can show [41] that this dramatic scenario is without any

serious foundation!
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Beyond that, it proves possible to extend the DHBjDI theories in a natural andsystematic
way that embodies the crucial KT concept of the effective Coulombic interactions that bind
the larger dipolar ion pairs, beingrenormalizedby smaller dipoles: Bjerrum’s chemical-
equilibrium picture extends simply to describe afamily of dipolar pairs of varying sizes
from r = a to ∞. Preliminary calculations [40] indicate that the original KT results
for low densities are reproduced (and extended), but a sharp tricritical point remains at a
surprisingly low density. If this is, in fact, correct it will be very hard to check, even by
the best simulations [42] since the first-order transition near the tricritical point appears
to remain exponentially weak. Finally, however, the original challenge to theory posed
by the experiments revealing van der Waals or classical critical behaviour in bulk, three-
dimensional electrolytes still remains unresolved!
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[3] Weingärtner H, Merkel T, Maurer U, Conzen J-P, Glasbrenner H and Käshammer S 1991Ber. Bunsen. Ges.
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